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For real 2 a correspondence is made between the Julia set B a for z --* (z - 2) 2, 
in the hyperbolic case, and the set of 2-chains {2 • ~ - A  • ,v/(A + ... }, with the 
aid of Cremer's theorem. It is shown how a number of features of B a can be 
understood in terms of A-chains. The structure of B a is determined by certain 
equivalence classes of 2-chains, fixed by orders of visitation of certain real 
cycles; and the bifurcation history of a given cycle can be conveniently 
computed via the combinatorics of 2-chains. The functional equations obeyed 
by attractive cycles are investigated, and their relation to 2-chains is given. The 
first cascade of period-doubling bifurcations is described from the point of view 
of the associated Julia sets and 2-chains. Certain "Julia sets" associated with the 
Feigenbaum function and some theorems of Lanford are discussed. 

KEY WORDS: Iterated maps; Julia sets; cascades of bifurcations; 
Feigenbaum functional equation; universal scaling. 

1. INTRODUCTION 

Iterated quadratic maps have played a central role in the continuing 
formulation of the general theory of iterated maps on inter- 
vals (14'25'29'35'36'39) and quantitative universality. (16'I7'23'3~ Studies of one- 

parameter families of quadratic maps suggest results which hold more 
generally. Fundamental to the behavior of iterates under a quadratic map is 
the structure of the associated Julia set; for example, the development of 
chaotic behavior for iterated real quadratic maps is associated with the 
arrival in the real line of successively more of the Julia set as a parameter is 
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varied; and cascades of bifurcations are related to sequences of topological 
structural changes in the Julia set. 

There are other reasons for interest in the structure of Julia sets of 
quadratic maps in particular. Features, such as certain "universal shapes," 
associated with the Julia sets of quadratic maps occur much more generally 
in connection with other polynomial-like maps. (15'2~ The theory of balanced 
measures on Julia sets  (2'6'8'1~ has led to the discovery of certain 
tridiagonal matrix operators with almost periodic structure, whose spectra 
are Julia sets of polynomial maps. (l's'9) The zeros of the partition function 
for certain hierarchical Ising models accumulate on Julia sets. (18) The 
spectrum and spectral density of a model Schr6dinger equation on a 
Sierpinski gasket, ~ of interest in percolation theory and also because of 
its renormalization properties, is a condensed Julia set and is closely related 
to the Julia set of a real quadratic map. (7) 

In this paper, we examine in detail the family of Julia sets B a for the 
quadratic maps T a ( z ) =  (z-~ . )2 ,  where 2 is a real parameter. We are 
concerned mainly with the hyperbolic cases ( - o r  < 2 < - 1 / 4 ;  - 1 / 4  < ,~ < 2 
and T a possesses an attractive cycle; 2 < 2 < or); and particularly with the 
description of B~t in terms of )~-chains ~4'38) 

• vq)` + vqx �9 

We consider certain combinatorics of k-chains and show how these are 
related both to the calculus of itineraries t14'25'29'35'36) and to the topology of 
B a. We also describe the first cascade of period-doubling bifurcations from 
the point of view of the associated Julia sets and ).-chains. Finally, we 
discuss certain "Julia sets" associated with the Cvitanovic-Feigenbaum- 
Coullet-Tresser functional equation; this involves a number of conjectures 
and is motivated in part by some theorems of Lanford. t3~ 

2. LAMBDA-CHAINS AND THE JULIA SET 

2.1. The Julia Set 

Let C be the complex plane and ~; = C U { oo }. Let B a denote the Julia 
set t13'11'27'28) for the mapping T a : C --, ~; defined by 

where /l ~ N. We will use the notation T~ and T~(z) for Ta(z ) 
composed with itself n times. B a can be described with the aid of the 
following definition. 
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Definition 1. If a finite set of distinct points {zl,zz,...,zk} c C is 
such that T~(Zl) = z2, T~(zz)  = z 3,..., T~(zk) = z 1 ; then {Zl, zz,..., Zk} is a k- 
cycle of T~. The k-cycle is attractive,  indifferent,  or repulsive, according as 

d 
7" (z)lz, 

is strictly less than unity, equal to unity, or strictly greater than unity, 
respectively. 

B a is the closure of the set of repulsive k-cycles of Ta, for all finite 
k. (27) An important characterization is that Ba is the set of points z C C, 

n Z where {T ( )},=0 is not a normal family. ~13~ Ba can also be described in 
terms of infinite compositions of branches of the inverse of Ta, which is the 
point of view we adopt. This description is developed next. 

2.2. Cremer's Theorem for Tx(z ) 

We begin by describing the Riemann surfaces, and convenient branch 
cut structures, for the inverses of T](z ) ,  n = 1, 2, 3,... 

Let R denote the inverse of T a. Then the branch points of R are 0 and 
~ .  Let 7 denote any simple continuous path which connects 0 and ~ on the 
Riemann sphere C. Let �9 denote two copies of the Riemann sphere C, each 
slit along the path ?, and joined one to the other at the lips of the slit; see 
Fig. 1. One seam, which we continue to call ?, belongs to one of the spheres, 

( 

> 

/X 

t C 
Fig. 1. This illustrates the conformal equivalence between �9 and ~ provided by R. �9 
consists of two spheres slit along y and joined there. The points 0 and oo occur only once, but 
7 {0, oo } appears twice, once on each sphere. (2 is divided into two components, labeled + 
and --, by the simple Jordan curve R + y U R _ y. 
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while the other, which we call 7', belongs to the other sphere. The end points 
0 and oo of 7 (and 7') appear only once, being common to both spheres. R 
maps �9 one-to-one onto C2, and we use the notation R+ for this mapping 
restricted to one of the spheres, and R for the restriction to the other 
sphere. The domain of each mapping can be taken to be (;, and their ranges 
divide s into two components separated by the Jordan curve R+ 7 U R  7. 
R_ is the analytic continuation of R+ across 7 -  {0, oo} and vice versa. 

Using R+ and R_ we can build up chains of inverse maps, such as 
R + (R _ (R _ (R + (R _ (z)))), which represent branches of the inverse mappings 
Rn(z), n E  {1,2,3,..}. The domain of Rn(z) is �9 which consists of 2" 
copies of C2 slit and interconnected along paths belonging to the set 
{7, T~t 7,..., T]-17}. T]-17 appears on two of the spheres, T]-27 on four of the 
spheres,..., and 7 on all of them. The finite critical points are: T~-10, which 
occurs once, common to the two spheres which are slit and joined along 
T]-17; T]-20, which occurs twice, once common to one pair of spheres 
which are slit and joined along T]-27 and once common to the other pair of 
spheres which are slit and joined along the same arc; ...; and 0, which occurs 
2 "-1 times being common on each of the 2 n -x  pairs of spheres which are 
connected along 7- The point at infinity is common to all of the spheres. The 
lips of the slits, along which the spheres are joined, are the branch cuts of 
R ". The domain of a single branch of Rn(z) consists of the projection from 
�9 onto ~ of one of the 2 n copies of ~;, complete with the branch cuts which 
belong to it. We refer to this domain as the original sheet of the domain of 
the given branch of Rn(z). By analytically continuing a branch of R n from 
its original sheet across a branch cut on that sheet, one arrives at another 
branch of R", complete with its own collection of branch points and cuts. 
Hence, a branch of Rn(z) can be defined as a holomorphic function on a 
domain which extends from the original sheet onto other sheets by crossing 
available cuts. 

To represent all of the branches of Rn(z), let S2 denote the set of all 
half-infinite chains of +1 and - 1 ,  so that co C/2  if and only if 

co = (el, e2, e3 ,...) 

where each e i E {-1,  1 }. Then we write 

Rn (z ) = Rs(e o(Rs(e2)(... Rs(e.,(z )... ) ) 

where s ( + l ) =  + and s ( - 1 ) = - .  We denote the set of all finite branch 
points of all inverse branches of T a by 

C =  {T~(0) ln C {0, 1, 2,...}} 
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Then every one of the functions R~(z)  is meromorphic in any simply 
connected domain D of �9 such that P(D) ~ ff = 0, where P : �9 ~ ~; denotes 
the projection which identifies elements of �9 with the corresponding points 
in C. 

The following theorem is readily deduced from Ref. 13 (p. 113, 
Theorem 6.2, and Lemma 6.3). 

ni Theorem (due to Cremer 1932). Let {Ro,~(z)} denote any infinite set 
of finite compositions of inverse branches of T 2, and let D be any simply 
connected domain on �9 such that P ( D ) N  C = O ,  and such that P(D) 
contains no accumulation point of successors of a point outside B a. Then 
{R~(z)} is normal in D and every convergent subsequence of 

tends to a constant which belongs to B a. Moreover, if b C Ba then there is a 
sequence of {Rmj(z)} which converges to b uniformly on closed subsets of D. 

The above theorem tells us we can set up a correspondence between the 
points of Ba and infinite sequences of inverse maps. To make such a 
correspondence we must first specify 7. Since the branch points of Rn are all 
real for 2 real, it is convenient to choose 7 to be either the positive real axis 
or the negative real axis. 

Definition 2. When 7 is the positive real axis, define 

R•  = 2 + v / r e  i~ 

where z = re i~ with r ~> 0 and 0 ~< 0 < 2m When 7 is the negative real axis, 
define 

= 2 + v / ;  e '~ 

where z = re i~ with r >~ 0 and -zr < 0 ~< ~r. 

Defintion 3. Let co ~ s Let 7 be the positive real axis and let b(co) 
denote the set of all limit points of {R~(z): n =  1,2 ..... oo}, for some 
specified choice of z. The set valued function b: .(2 ~ {subsets of C;} is called 
a positive axis 2-chain function, and the set b(co) is called a positive axis 2- 
chain. Similarly, define/~ to be a negative axis 2-chain function, and b(co) to 
be a negative axis 2-chain, by taking 7 to be the negative real axis. 

The following theorems, based on Cremer's theorem, give conditions 
under which either b or b" is a single-valued mapping from 12 onto B a. Each 
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theorem corresponds to a different range of real )~-values; and suitable 
choices for z, required in Definition 3, are implied. 

Definition 4. Let {Z~,Z2,...,Zk} be an attractive k-cycle of Ta. Then 
the attractive set of the k-cycle is defined to be A k, where 

At: = {z ~ 0 [ lim T]k(z) C {Zl, z2,..., Zk}t 
? l --~ O0 

We remark that T a possesses at most one attractive k-cycle because R 
has only one finite branch point, and there must be at least one such point in 
the attractive set of a k-cycle. In particular, attractive k-cycles are always 
real, which is one reason why real axis cuts are most convenient. 

Theorem 1. Let 7 be the positive axis branch cut. Let 2 ~ [--1/4, 2] 
be such that T a admits an attractive k-cycle {z l,zz,...,zk}. Let Q be any 
region in the complement of the attractive set, with oo n Q = 4. Then for 

n ~ converges uniformly on closed subsets of Q to a each co ~ $2, {R~o(Z)}n= 1 
single element b(co)C B~. Moreover the mapping b: $2 ~ B a  is onto. 

Proof. Since the branch point 2 is attracted to the k-cycle, C can be 
covered by a finite union of disjoint convex open sets F, such that f f c A  k. 
Then (C - / 7 )  n ~: is a finite union of disjoint connected components. Let N i 
be an open neighborhood of the ith component, such that N i n Nj = ~i for 
i v~ j and Ui Ni n y = (C - if) n ?, 0t). Then we define a domain D on �9 to 
consist of C - / 7  lifted to one of the spheres of �9 together with Ui Ni lifted 
to the other sphere. The conditions (~) ensure D is a simply connected 
domain on �9 and clearly P ( D ) n  (7= 4. Moreover neither the k-cycle nor 
co belong to D, so D does not contain any accumulation point of successors 
of a point outside B a. Hence Cremer's theorem applies to {R~(z)}n~ 1 
over D. 

Let e denote the exterior of a closed disk centered at the origin, 
containing A k, and of a radius so large that The c e. Define a region S on �9 
to consist of C - A  k - ~ lifted to one of the spheres of �9 together with 
( C - - A  k - e ) n  y lifted to the other sphere, such that S c D .  Then Cremer's 
theorem applies to /R ~(z)} n ~176 1 over S. 

Observe now that R •  This is true because C - A  k is totally 
1 ?! invariant under Ta, and Re ~ s .  It follows that R ~  + ( D ) ~ R o ) ( D ) ,  and so 

{R~(D)}n~176 1 converges uniformly to a single constant limit belonging to Ba. 
The convergence is uniform because S is closed. The last part of the theorem 
follows from the last part of Cremer's theorem. II 

Theorem 2. ~z) Let 7 be the negative axis branch cut, and 2 < ~. < 00. 
Let S = [2 -- 1/2 -- (2 + 1/4) 1/2, 2 + 1/2 + (2 + 1/4) l/z] and let D be any 
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bounded open set in C such that S c D ,  D N ( - - o o , 0 ] = ~  and 
D n [4 2, oo) = ~. Then for each 05 ~ ~ ,  t ~/~"~ot~z~jj.=lt oo converges uniformly on 
D to a single element/7(05) E B a. The mapping /7: ~ -~ B a is one-to-one and 
onto. 

Sketch  of  the Proof. See also Ref. 2. A similar argument to the proof  
of  Theorem 1 applies here. In this case, the union of  the branch cuts 
{T]T I n E {0, 1,2,...} consists of  the negative real axis together with the 
positive real axis from A 2 to oo. Hence D obeys the conditions of  Cremer's  
theorem. Also, s i n c e / ~  S c S we can assume without loss of  generality that 
/~+D c D, which gives the desired convergence of  ~ {R~(z)}.=l .  The one-to- 
one property of  the resulting mapping/7 from ~ into BA follows from the fact 
that 

s n  U r ~ y = 0  ! 
n=0 

Theorem 3. Let 7 be the positive axis branch cut and 
- o o  < A < - 1 / 4 .  Let S be any closed bounded simply connected domain. 
Then for each w Cs {Rn(z)/n~176 converges uniformly on S to a single 
element b(co) ~ B a. The mapping b : .O -~ B a is one-to-one and onto. 

Sketch  of  the Proof. Without loss of  generality we can take S to be a 
closed disk, centered at the origin of  radius so large that T a S D S. Let D be 
an open disk which contains S, such that TaD ~ D. Then there is a finite 
integer m such that RmD n {U~=0 T~7} = 0 [since B a n ~ = r because 
Ta(z) - z > 0 for z C ~, and B a is the closure of  repulsive cycles] and RInD 
is simply connected. Letting /5 =RIND, we find that Cremer 's  theorem 
applies to {R~(z)}n~ 1 over /5. Moreover, since R •  it follows 
that {R~(z)},~__l converges uniformly to a single constant in b(co), for 
z E R ms and consequently for z C S. The one-to-one property follows from 

U ~ R m s  n { ,=0 T]7} = 0. This complete the sketch of  the proof. I 

In order to make a specific definition of  the k-chains b(co) or /7(0)), 
under the conditions of  Theorems 1, 2, and 3, we will suppose the value of  z, 
required in Definition 3, to lie in the upper half-plane. 

We will have occasion to use the notation 

b(co) = A 4:- 81V/(A + e2 V/IX + e3... 

when co = (e~, eA, e 3 .... ) C ~Q, and the positive axis branch cut is understood. 
A similar notation may be used for negative axis A-chains. Observe that A- 
chains can be used not only to characterize elements of  B a, but also as a 
means for numerical computation. 
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2.3. Relation Between Positive Axis and Negative Axis J~-Chains 

When 2 < - 1 / 4 ,  b is one-to-one; while when 2 > 2,/~ is one-to-one. As 
2 increases from - 1 / 4  to 2 more and more elements o f B  a lie on the positive 
axis and it is necessary to convert these elements from a description in terms 
of positive axis 2-chains to one in terms of negative axis 2-chains, in order to 
preserve one-to-oneness. This is because there is more than one 2-chain 
characterization of an element of  B a which lies on the branch-cut  for the 2- 
chain; this leads in particular to computat ional  instability, and in such cases 
we say that  the 2-chain suffers from "branch-cut  instability." 

The conversion between positive axis and negative axis 2-chains is 
effected using a mapping h: ,(2 ~ I2 defined by 

h(09) = h(e 1, e2, e 3 ,...) = (ele2, e2e3, e384,... ) = a) 

h is two-to-one and onto, and the two solutions of  h(09) = 03 = (el,  e2, e3 ,...) 
are • with 09= ( e l , e z , e  3 .... ) and el = 1, ej+~ =Yiej  f o r j C  {i, 2, 3,..}. 

D e f i n i t i o n  5. The 2-chains b(09) and /~(05) correspond when 
= h(09). 

One would like to say that if b(09) and /~(03) correspond then they 
represent the same element of  B a. The actual situation is more interesting, as 
shown by the following statement and its proof. 

Theorem 4. Let 05 = h(09). If  o5 has infinitely many  - l ' s  then 

= {b(09), b ( - 0 9 ) /  

If  05 has a finite number  n of  - l ' s ,  and if co = (1 ,  e 2, e 3 .... ), then 

b~(05) = b ( ( - 1 ) "  09) 

ProoL Let co C -(2 be given, and recall that  b(09) consists of  the set of 
accumulat ion points of  {Rn(z)}~=l . Thus, taking 

09 = (el,  e2, e3,... ) 

b(09) equals the limits of  the sequence 

2 + e l v / z ,  J. + e, V/(2 + e2v/z) ,  2 + el,v/(-2 + e2,v/(2 + e3 k/z)),.o. 

(positive axis cut) 

where the positive axis branch cut is understood. Recalling that z has been 
fixed to lie in the upper half-plane, it is straightforward to verify that the 
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{So~(z)}.=l whose successive latter is the same as the sequence of number ~" co 
terms are 

2 + e lvfz ,  Z + ele2v~-~ + e2v/z), ~ + e le2V~ ~ + eEe3V/( Z + e3 VfZ)), ... 

(negative axis cut) 

where the negative axis branch cut is understood. Compare this with the 
sequence 

Z + e l e  z V/z, Z +e,e2 V~Z +eze3 V~) ,2  +ele2"v#(2 +eEe3 V/(~ +e3e4 V/J)) .... 

whose limit points form the set/~(05). For each n we have either ene,+~ = en 
~ n  n or e , e ,+ l  = - e ,  ; accordingly, for each n, we have R~(z)C {So~(z), S_~o(z)}. 

Hence if (3 does not contain only finitely many - l ' s ,  which means co has 
infinitely many + l ' s  and infinitely many - l ' s ,  it follows that 

5(c ) = {b(co), b ( - c o ) }  

If a5 contains only finitely many - l ' s ;  then either co contains only finitely 
many - l ' s ,  in which case 

= b(co) 

or else co contains only finitely many +l ' s ,  in which case 

= - b ( c o )  

The latter sentence is equivalent to the last assertion in the theorem. | 

We remark that b(-co) is the complex conjugate of b(co), see Ref. 2. 
The following statements can now be established with the help of 

Theorems 1, 2, 3, and 4, and the properties of h: X2 ~.Q. They are valid 
when either - o r  < Z < - 1 / 4 ,  or 2 < Z < oo, or - 1 / 4  < 2 < 2 and T a has an 
attractive k-cycle. Both b: s B a and/~: .Q ~ B a are onto, and b is single- 
valued. If z =/~(co) for some co ~ X?, then z7 C/~(co). If b(co) C ~ for some 
coEX? then there is a C ~  with a=/=co such that b(co)=b(a) .  When 
- o o  < 2 < - 1 /4 ,  /~ is double-valued and b is one-to-one. When s > 2, /7 is 
single-valued and one-to-one, while b is two-to-one. As 2 increases from less 
than - 1 / 4  to greater than 2, b changes from double-valued to single-valued, 
while b changes from one-to-one to two-to-one. These changes mark the 
progression of B a from having the property B a (3 N = r when --c~ < Z < 
- 1 / 4  to having the property B a ~ ~ =B~  when 2 < 2 < oo. 
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2.4. Equivalence Classes of ,~-Chains and the Topology of B~ 

Define the distance between co = - ( e l ,  e2, e 3 .... ) and cr = - ( f l , f z , f 3 . , . )  in 
.c2 by Ico-crl=lY~=~(ei- f i ) /2i+l  I. Then ~ is a topological space 
homeomorphic  to the real interval [0, 1], provided that we identify the 
elements (e 1, e 2 ..... e m, 1, - 1 ,  -1 , . . . )  and (el,  ez,..., era, - 1 ,  +1,  +1,...), whose 
distance apart  is zero. 

Theorem 5. When --1/4 < 2 < 2 and Ta has an attractive k-cycle, b : 
12 - Ba is continuous. 

Proof. First we show that b is well-defined with respect to the iden- 
tifications in .c2. Observe that b ( + l ,  +1,  +1,...) = b ( - 1 ,  - 1 ,  -1 , . . . )  C ~; see 
Ref. 2. Hence b ( + l ,  - 1 ,  - 1 ,  -1 , . . . )  = b ( - 1 ,  +1,  +1,  +1,...), which lies on 
the negative real axis. All preimages of  the latter point do not lie on 1), 
whence b(el, e2,... , era, 1, - 1 ,  - 1 ,  -1 , . . . )  = b(el, e2,..., e m, - 1 ,  + I ,  +1,  +1,...) 
and so b is well defined. 

Let co E 12 and 5 > 0. Introduce the projection operator  Pm: .(2 ~ f2, 
defined by Pro(el, e2, e 3 .... ) = (el,  e2, e 3 ..... em, - 1 ,  - 1 ,  -1, . . . ) .  By Theorem 1 
there is an integer N such that I b(co) - R ~(z)! < 5 for all n /> N and z C B~. 
Hence Ib(co) - b(a)l < e whenever PNCO =PN a, with cr C 12. 

Suppose co does not terminate in (+1,  +1,  +1,...) or ( - 1 , - 1 , - 1 , . . . ) .  
Then we can choose 6 >  0 so that  ] co -o r  I < 6  implies PNCO=PNCr, and 
hence that  Ib(co ) -b(cr ) l  < 5. 

Suppose co does terminate in (+1,  +1,  +1,...) or ( - 1 , - 1 , - 1 , . . . ) .  Then 
co possesses two equivalent representations co and co', one terminating 
(+1, +1,  +1,...) and the other terminating (--1, - 1 ,  -1, . . . ) .  Note that  b(co) = 
b(co'). Choose the positive integer M so that ]b (co ' ) -Rm, (z ) ]  < 5 whenever 
z C B a and m >/M. It follows that  I b ( c o ) -  b(cr)l < c whenever PMco' =PM or" 
Finally observe that we can pick 6 > 0 such that  t co - crl < 6 implies either 
Puco=PNcr or PMCO' =PM a, in both of which cases tb(co)-b(cr) l  < 5. II 

In what  follows we assume b: ~ ~ B~ is continuous. We then have a 
useful description of the topology of Ba in terms of  positive axis ;t-chains. b : 
/ 2 -  B,t is a continuous mapping of a compact  topological space onto a 
Hausdorf f  space. Hence the identification topology of Ba which is induced 
by b is the same as the relative topology of Ba as a subset of  C. {33) That  is, 
for any subset O a B  a we have that  b-lO is open if and only if there is an 
open subset Q a C such that O = Q (3 C. 

Let us consider the construction of  some continuous curves lying in Ba ,  
which join a given pair of  points z a and z 2. It will be convenient for us to 
identify each element co = (el,  e2, e3,... ) of  f2 with the corresponding element 
.O(eOO(e2)O(e3)... of [0, 1] in binary decimal expansion, where 0 ( + 1 ) =  1 
and 0 ( - 1 )  = 0. Then we refer to [0, 1] in place o f /2 .  Also, when c~ < y, we 
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will understand by [?,6] the usual closed interval [6, y]. Let a E b - l ( z l ) ,  

f i e  b-'(zz),  and form P =  [a, fll] U [a2,flz] U . . .  U [a,  1 ,f l , -1]  U fan,ill, 
where ai+ 1 C b-~(b(fli)) and fl,. C [0, 1] for i C {0, 1, 2,..., n -  1}. Then b(P) 
is a continuous path which lies in B~t and joins zl to z 2. For  example, we 
know that b(0) = b(1), and hence each of PI = [1/3, 0] U [1, 2/3] and Pz = 
[1/3, 2/3] leads to a continuous path which lies in B a and joins b(1/3) to 
b(2/3). 

If F is a continuous curve in B~ which connects z 1 to z z, then its 
complement B ~ - / "  is open and b - X ( B z -  F ) =  [0, 1] - b - I ( F )  must consist 
of a countable union of open intervals in [0, 1 ]. 

D e f i n i t i o n  6. Elements a and ~ of 12 are equivalent when 
~3 E b-l(b(a)). Equivalent elements are denoted a ~ co. 

When b: 12-* B~ is continuous we can think of the topology of B as 
being that of [0, 1] "pinched together" or "joined to i tself '  at equivalent 
points. For  example, when --1/4 < 2 < 3/4 one can show that the only pair 
of  distinct points in [0, 1] which are equivalent is {0, 1}, and as a conse- 
quence B~ is a simple Jordan curve. In Section 3.1 we describe the depen- 
dence on 2 of the equivalence classes of points in 12. 

2.5. Symbolic Dynamics Using A-Chains 

Not only do the ~-chains codify the topology of B:t, but also they 
describe the dynamics of Ta: B~ ~ B~. Let g-: 12 ~ 12 denote the right-shift 
operator defined by 

g-(e 1 , e2,..., e ..... ) = (e2, e 3 ..... en_l,... ) 

When either - m  < 2 < - 1 / 4 ,  or 2 < 2 < m,  or - 1 / 4  < 2 < 2 and T~t has an 
attractive k-cycle, we have 

T:~b(og) = b(gco)  for all co E 12 

Similarly, for the negative axis 2-chains/~(co), which are single-valued when 
5(09) is real and double-valued otherwise, we have 

{Txg(co)} = {/~(g'co)} for all ~ ~ 12 

where the brackets { } denote the set of  values of the enclosed set-valued 
function. These relations are readily proved. For example, when Theorem 1 
applies, since T~: C--* C is continuous, 

T~b(co)= T~ lim R L ( z ) =  lim T~RL(z ) 
n ~ o o  n - ~ o o  

- l i m  n - -  R , - ~ , ( z )  = b ( g - c o )  
n ---~oo 
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where z E Ba.  The corresponding result for ff follows from 

{TAb(co )}  = r ) t b ( { h - l ( co ) } )  = b(~'-{h-1(o9)}) 

----- b ( i h - l ( g - c o ) } )  = {if(g-co)} 

Notation. Let us denote periodic elements of  S'2 according to 

( f l , f E , . . . , f l , f l , f 2 , . . . , f l , f l  .... ) = (fx, f2,.. ' , f /)  

and eventually periodic elements of  s according to 

(e,,  e2 ..... e k , f l , f E , . . . , f l , f l , f 2 , . . . , f t , f x  .... ) 

(el, e2 ,..., ek t f l ,  f2 ..... fl). 

Also, it is convenient to conserve only the signs of  components of  elements 
of  s Thus, for example, we write 

(+1 , - -1 ,  + I , - 1 ,  + l , - -1 , . . . )  = (+--)  

and 

( - 1 ,  +1,  + 1 , - -1 ,  +1 , - -1 ,  + 1 , - 1 , . . . )  = ( - - + t  +- - )  

It is now possible to describe dynamical  features of  T a acting on B a in terms 
of  ).-chains. To illustrate this, take 2 < - 1 / 4  so that b: s --+ B a is one-to-one. 
Then the only 2-cycle of  T a on B a must be {z~, zz}, where a 1 = b ( + - )  and 
z 2 = b ( - + ) .  Any point z E B a such that T"az = z 1 must be expressible in the 
form z = b ( e  1,e2,.. . ,e k t + - ) .  The only 3-cycles of  T a on B a must be 
{b(++--) ,  b ( + - + ) ,  b ( - + + ) } ,  and { b ( - - + ) ,  b ( - + - ) ,  b ( + - - ) } .  The only 
fixed point (1-cycles) of  T a on B a are b(+)  and b ( - ) .  Observe that there are 
exactly 2" distinct elements co E / 2  such that g-"co = co. Hence, when either 
b : s ~ B a or if: s -+ B a is one-to-one, B a contains exactly 2" distinct points 
z such that T ] ( z ) =  z, and since the polynomial T~a(z)-  z = 0 possesses at 
most 2" distinct roots, we conclude that all k-cycles for all k belong to B a. 
Conversely, when T a possesses an attractive k-cycle neither b:  s B a not 
b': s B a is one-to-one. 

When - - 1 / 4 < 5 ~ < 2  and T a possesses an attractive k-cycle, the 
representation of  cycles belonging to B a is more complicated. We have 
T~b(co) = b(co) if and only if b(g-"co) = b(co), if and only if co ~ g'"co. Hence 
there is an interplay between the equivalence class structure o f / 2  (which, we 
recall, fixes the topology of  Ba) and the dynamics of  T a on B a. 



Julia Sets of Real Quadratic Maps 63 

3. RELATION BETWEEN THE ITERATED REAL M A P  
X ~ (X - A) z A N D  A-CHAINS 

3.1.  How the Equivalence Classes of A-Chains are 
Fixed by B A • [0, oo} 

Throughout  this section we suppose that --1/4 < 2 < 2 and that T a 
possesses an attractive k-cycle. Under these conditions we know from 
Section 2.4 that the topology of B a is that of  [0, 1] "pinched together" or 
"joined to itself" at equivalent points. Here we show how the set of 
equivalent points are determined by the elements of B a ~ [0, oo). 

For m E {1, 2, 3,..} let Pm: /2-+/2 denote the projection operator such 
that 

Pm(e" e2' e3 , '") = (el,  e2,'", em t --) 

and let P00) = (--). 7 denotes the positive axis branch cut, 7 = [0, oo). 

Theorem 6. Let --1/4 < 2 < 2, and let Ta have an attractive k-cycle. 
Let z C B a. If T':t(z ) ~ 7 for all n C {0, 1, 2,..} then {b-l(z)} consists of a 
single element. If T~(z)E 7 but T~-l(z)~ y for some n C {1, 2, 3,...}, then 
{b 1(z)}={0)1,0)2} where co1:~co2, P,_10)l=P,_10)2, and {g-'-10) 1, 
~'-n-ICO2} = { h - i ( h ( f ' n - l c o l ) ) } ,  If z C 7 then {b-l(z)} = {(.Oi, 0)2} = 

{h-'(h(co,))}. 
Example 1. Let --1/4 < 5~ < 3/4. Then B a ~  [0, oo) contains only 

a = 2  + 1/2 + (2 + 1/4) 1/2, and b - l ( a )  = {(+), ( - )} .  Theorem 6 now states 
that the only elements i n / 2  whose equivalence classes consist of more than 
one element are ( + ) ~ ( - ) ,  (+ t - )  ~ ( -  } +),  and ( e l , e l  ..... e , , + } - ) ~  
(el ,  e 2 ..... en , -  }+). It was precisely these equivalences which permitted the 
identification of [0, 1] wi th /2  in Theorem 5. 

Proof of Theorem 6. Suppose T](z) ~ 7 for all n. Then T~t(z) ~: F~ for 
all n, since if T~z < 0 for some m then T"j+l(z) ~ 7, and T](z)4=O because 
the branch point 0 is attracted to the k-cycle and so does not belong to B a. It 
follows that, for each n, either Im T]z > 0 or Im T]z < 0. The coefficients in 
0) = (el, e2,... ) E b-l(z) are given by e,  = +1 if Im T](z) > 0 and e,  = - 1  if 
Im T](z) < 0, which fixes co uniquely. 

Suppose T](z)Ey but T ] - I ( z )  E~7 for some n E {1, 2, 3,...}. Then 
T ~ - l ( z ) < 0 ,  and for each k E I 0 , 1 , . . . , n - 2 }  either I m T ~ ( z ) > 0  or 
Im T](z) < 0, which fixes uniquely the coefficients in P , _  ~co independently 
of the choice of co C {b-l(z)}.  Since T'~(z) for m/> n -- 1 lies on the real line, 
it is convenient to consider the associated negative axis 2-chains. Let 03 = 
( e l ,  e 2 , - . . )  ~ {b ' - l (T]- lz)} .  Then T~t-Iz < 0 implies Yl = --1. Moreover Yj for 

j C { 1 , 2 , 3 , . . . }  is uniquely defined by Y j = + I  when T]+J-2(z)>)~ and 
Yj = - 1  when T]+J-2z < ~.. (Notice that T]z ~e ~. for any n because 0 E~ B a 
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implies 2 = T a 0 ~ B a .  ) Hence o3 is fixed uniquely, and { b - ~ ( T ] - l z ) } =  
{h - lo3 } = {h-  l (hg-n-  leo) } consists of  exactly two elements, as claimed. 

Similarly, if z C y then /~-l(z)  has only one element and {b- l (z)}  = 
{h- l ( /~- l (z))}  consists of  two elements {co l, eo2} = {h-l(h(eol))} . II 

3.2. Orders of Visitation for Real A-Chains: 
Loners and Partners 

In view of Theorem 6 we want to describe B a ~ [0, 0o). To do this we 
need to know what is meant  by order of visitation for a real k-cycle given by 
a 2-chain, and how to calculate it. Because we are concerned with elements 
of  the positive axis branch cut, it is most  convenient to work in terms of 
negative axis 2-chains. 

Let o9 = (e l, e2,..., ek) be a periodic element of  Y2 which may contain 
subperiods, and let 2 be such that/T(eo) is defined and real. Then by the cycle 
(b(el, e2,... , ek) ) we mean the set of  points {/7(co), E(g'eo) ..... /7(g-k-leo)}. In 
general, when we refer to such a cycle it is to be understood that 2 is such 
that  the cycle is real. I f  eo belongs to a k-cycle in Y2(gJeo 4: co for 
j C { 1, 2,..., k - 1 }) then (6@1, e 2 ..... ek) ) is a real k-cycle for T a . We denote 
this k-cycle by {X1,X2,...,Xk} where x i=b(g - i - l eo ) ,  so that T a x j = x j +  1 for 

j C { 1, 2,..., k - 1 } and Tax  k = x 1. Since the k-cycle (/~(e' 1 , e~ ..... e~)) is the 
same as the k-cycle (/7(el,e2,... ,ek)) whenever (e'l,e~ ..... el,) is a cyclic 
permutat ion of @1, e2 ..... ek), we can assume without loss of  generality that 
x 1 < xj f o r j C  {2, 3,..., k}. 

There are two logical orderings of  a real k-cycle. Already we have used 
the notation {Xl,Xz,.. . ,Xk} putting the points in iterative order. The points 
also may  be put in increasing order. For example a 5-cycle may  have the 
increasing order x 5 < x 3 < x 4 < x z < Xl. We call the combined information 
the order of visitation. It can be given diagrammatical ly;  for example 

- -  - -  - -  X ~  . . . .  

To determine the order of  visitation of a k-cycle (/~(e 1, e 2,..., ek)) we define a 
mapping ~ from a =  ( f l , f 2 , f 3 , . . . ) E ~ ?  into [0, 1] in binary decimal 
representation by 

O(a) = O.  a ,a2a3"'" ak"" 
where 

l~ if f l f 2  "'" f" = +1 

ai = if f i f E " "  f i  = --1 



Julia Sets of Real Quadratic Maps 65 

Theorem 7. (A) The order of visitation of the real k-cycle (b(co)) --- 
{ x ~ , x  2 ..... xk} is given by the increasing order of the set of real numbers 
{0(o~), 0(~-~o),..., ~(~-k-lco)}. If ~ = (el, e2,..., ek) and xl < xj  for 

j C {2, 3,..., k}, then e i = + l  when x i > x  k and e i = - I  when x i < x  k. (B) 
Conversely, if (el, e2,..-, ek) is a k-cycle in O such that ei = +1 when x i > x k 

and ~ = - 1  when x i < x k, then the real k-cycle (b'(g 1 , e2,..., ek)) has the same 
order of visitation as {x~, x 2 ..... xk}. 

This theorem allows us to make the following definition. 

Definition 7. In the notation of Theorem 7, when ek =--ek and 
(/~(gl,Y2,...,Yk))= {21,22,...,2k} is a real k-cycle, the two real k-cycles 
{x 1, x 2 ..... Xk} and {21, 22 ..... 2k} are partners. Otherwise {xl, x2,..., xk} is a 
loner. 

The point of the definition is this. At fixed 2 the theorem tells us that 
when I x ~ , x z , . . . , x k }  is a loner there is no other real k-cycle, given by a 
negative axis 2-chain, with the same order of visitation; and when 
{X~,X2,.. . ,Xk} has a partner, then its partner is the only other real k-cycle, 
given by a negative axis 2-chain, with the same order of visitation. The 
significance of a k-cycle being a loner, or having a partner, is described in 
Section 3.3. 

P r o o f  o f  T h e o r e m  7(A). It is straightforward to check that if/~(al) 
and /~(a2) are real 2-chains then /~(al) </~(a2) if and only if ~(al) < 0(a2). 
From this follows the first statement in the theorem. 

Since x~ is the smallest member of the k-cycle, it is closest to zero. 
Hence x k is closest to 2. Hence, xj with j ~ k is greater than 2 if and only if 
xj is greater than Xk, and xj is less than 2 if and only i fxj  is less than x k. But 
xj > 2 if and only if ej = + 1, and xj < ,t. if and only if ej = - 1, which proves 
the second statement in the theorem. 

We defer the proof of (B) until after the proof of Theorem 9. Although a 
direct combinatorial proof should be available, the only approach we know 
relies on the structure of the bifurcation diagram for T a. 

Example 2. Consider the real 3-cycle ( /~ (++- ) )=  {x'  1 = / 7 ( + + - ) ,  
x;  = / ~ ( + - + ) ,  x; = /~( -++)} .  The order of visitation is given by the ordering 
of the sequence {.110, .100, .000}, whence x~ < x~ < x~, which can also be 
expressed 

822/37/1-2-5 
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! If we relabel the cycle x I = x~, x 2 = x~, x 3 = x2, then the order of visitation 
is x~ < x 3 < x2, where x~ = b ( - + + ) .  Theorem 6 (B) now asserts that the 
order of visitation for the 3-cycle ( i f ( - + - ) )  = {21 = 17(-++), 2z = 17(++-), 
x 3 =17(+-+)}  is )31 < 23 < 22, which is readily checked. The two cycles 
{x 1, x z, x3} and {21, )?2,2a} is this example are partners. 

Example 3. Consider the real 4-cycle ( / 7 ( - + - - ) )  = {x 1 = 1 7 ( - + - - ) ,  
x2 = 17(+___),  x3 = 17(2___+), x4 = 17(__+_)}. The order of visitation is 
given by the ordering of the sequence of numbers {.0010, .1010, .0100, 
.0110}, whence xl < x 3 < x 4 < x2, which can also be expressed 

In this case (gl, e2, e3, g3)= (--1, + 1 , - 1 ,  +1) which is not a 4-cycle in .(2. 
Hence {xl,Xz,X3,X4} is a loner. On the other hand, the two real 4-cycles 
( i f ( - + + - ) )  and ( t7 ( -+++) )  are partners, each with the order of visitation 

3.3. Continuation of Real k-Cycles 

Here we consider the analytic continuation, especially through 
decreasing ~,-values, of negative axis 2-chains for real k-cycles, starting from 
a value of 2 greater than 2. We show how combinatorial features of the 2- 
chain allow one to compute its complete history, including whether or not it 
was an attractive cycle for some range of 2-values, whether it first became 
real via tangent or pitch-fork bifurcation, and the k-chains for cycles from 
which it bifurcated. When a k-cycle is attractive it cannot be represented by 
a 2-chain but instead obeys a functional equation which is determined from 
the corresponding 2-chain when 2 > 2. Of particular interest to us is the 
switching between elements of ~ which occurs when a repulsive k-cycle 
leaves the Julia set to become an attractive cycle (what elements of the Julia 
set does the old 2-chain now represent?), and vice versa. 

The actual continuation arguments we use are of standard type (see for 
example Refs. 23, 35), and we rely on the works of Guckenheimer (25) and 
Douady and Hubbard (20) to tell us how cycles are born, and that a real 
cycle cannot become not real for some larger 2-value. 

Let o) = (el, e 2,..., ek) be a k-cycle in ~q, and fix 2 0 > 2. For this value of 
2, (17(el, e2,..., ek)) is a real k-cycle because Bao c N. We denote this k-cycle 
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o 0 for by {x~,x~ x~}, where x ~ = b(el ,  e2 ..... ek) and we suppose x~ < xj 
j E {2, 3,..., k}. We define a function of  x and 2 by (e 1, e2,. . . ,ek)(X, 2 ) := 
2 + elV/(2 + e2v/(2 + ... ek_lV/(2 + e k v / x ) ' . . ) )  where the negative axis 
branch cut is used, and where the domain is the set of real 2 and x such that 
(ex, e2,..., ek) (X, 2) is real. Then (x~ is a solution of  the equation 
us(x, 4 ) =  0, for j E {1, 2,..., k}, where 

Uj(X , 4)  := X -- (es, es+ , .... , ek, el ,  e2,..., es_ O(x, 4) 

The implicit function theorem states that there is a unique continuation of 
this solution when c'~uj(x s, 2)/c'~xj exists and does not vanish. 

We have 

cgus (x j ,  4)  = 1 el e2 "'" ek 
c~x s 2k(Xi X2 . . .  Xk) 1/2 

(*) 

It follows that there is an open interval I containing 4 o, and a unique set of 
continuous functions {x1(2 ), Xz(2), . . . ,Xk(2)} defined for 2 E 1 and obeying 
uj(xj(2), 2 ) =  0 for all 2 E l .  Moreover (i) each of {x1(2), Xz(2) ..... xk(2)} is 
finite and strictly positive for all 2 E / ,  and (ii) 

1 - -  elez "'" ek 
2k(X ,X  2 L )  A/2 ] 4:0 

for all 2 E L We assume I is the largest open interval such that the above 
statements are true. 

We show that no two members of  {x1(2), X2(2), . . . ,Xk(2)} can be equal 
for 2 E L We can have x j ( 2 ) =  x1(2 ) with j 4: l only if the polynomial 
equation T k a ( x ) -  x = 0 has xj as a double root. For this it is necessary that 
~[Tk(xj) -- x j ] / #x j  = 0. That is, 

2 k T ] ( x O  T](x2)  . . .  T~(Xk) -- 1 = 0 

Since uj (x j ,  2) = 0 and xj > 0 for j E { 1, 2,..., k}, the last condition can be 
rewritten 

eae 2 . . .  ek2k(XlX2 . . .  Xk) u 2 -  1 = 0 

which is not possible by (ii). We conclude xj(2) 4:xl(2 ) for all 2 E I. It now 
follows directly from the equation uj(xj(2), 2) = 0 that {x1(2 ), x2(2),..., Xk(2)} 
iS a k-cycle for Ta, with x1(2) < xj(2) f o r j  4:1 and having the same order of 

0 0 0 visitation as { x l , x  2 ..... Xk}. 
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It is important  to understand that although {x ~ x~ x ~ ~ Bao~ it may  
not be true that {xl(2), x2(2),..., Xk(2)} c B  a when 2 < 2. Observe that 

T~(x) = e 1 e , . . .  e k 2* Ix, (/l) x2(2) �9 .. Xk(2)] 1/2 
C~X X x l ( a )  

Hence {x1(4), x2(4 ) ..... xk(s is a repulsive k-cycle and belongs to B a when 
2k[x1(2)x2(2) ...  xk(;c)]l/a > 1. {xl().), xz(,~),...,xk(Z)} is a attractive k-cycle 
and does not belong to B a when 2k[xI(J,)XI@)... X k ( ~ ) ]  1/2 < 1. 

Let I = (v, p). Then ~t = oo. To see this we suppose that  r is finite and 
consider what can happen to {xl(2 ), x2(2 ) ..... x,(2)} as s ~ t .  No member  of  
the cycle can approach oo as 4 ~/~, since any continuation of any finite root 
of  Tka(x)-  x = 0 remains finite for finite /1.. It  follows that  we can define 
xj(p) = l i m a , ,  xj(,~). We cannot have x l ( p ) =  0 because all k-cycles belong 
to B a and 0 ~ B a for 4 > 2. Finally, we cannot have 

e l e  2 . . .  8 k 
1 -- 2k[Xl~)XE(a) ... Xk~)]I/2 = 0 

for if so then T*u(x ) -  x = 0 has a double root. The latter is not possible 
because it implies the false assertion that if: s -~ B ,  is not one-to-one. It now 
follows that {x l~  ) ..... xk~)}  has a unique continuation throughout some 
neighborhood of p, where it obeys uj(xj0,) ,2 ) = 0. This contradicts our 
assumption on I. 

We must have v / > - 1 / 4  because T a possesses no real k-cycles when 
~, < - 1 / 4 ;  also as above, we can define xj(v) = lira a_~+ xj(~,) < oo. Thus, on 
the continuation of solutions of  uj(xi(2 ), ,~) -- 0 we have so far established the 
following theorem. 

Theorem 8. Let co = (el,  e 2 . . . . .  ek) be a k-cycle in s let 4 = Z 0 > 2, 
and let (/~(el, e 2 ,..., ek) ) = {x ~ x~ ,..., x ~ } be the corresponding real k-cycle in 
Be0. Then there is a unique real continuation (xj(~,), 4) for ), in a largest open 
interval I = (v, oo) containing Z 0, where v > / - 1 / 4 ,  such that 

uj%(4), 4) = xj(4) 

- (4,l + e j v / ( / l  + . . .  + ek V"(Z + ffl ~V//(/~, ~- ' ' '  -I- e j _ l  V ~ j ( 4 ) ) ' " ) ) ' "  ) 

= 0  

and xj(40) = x  ~ f o r j G  {1, 2,..., k}. {Xl(4), x2(4) . . . . .  Xk(/~)} is a real k-cycle of  
T:t, for all 4 E I. 

When we can do so without ambiguity,  we will use the notation 
(/~(el,e2,...,ek)) both for the real k-cycle {x1(2), x2(2),... , Xk(it)} in 
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Theorem 8, and for its continuation through decreasing 2-values as long as it 
remains a real k-cycle, obeying Tk(Xl(2))= X1(2), even when it may be that 
the cycle in question is attractive (thus failing to belong to the Julia set) over 
a range of k-values, and the negative axis k-chain does not converge to the 
cycle with which it is identified by the notation. Notice that the order of 
visitation for the k-cycle is independent of 2 and hence can be calculated 
from co = (el, e2 ..... ek) as in Theorem 7A. 

Before we consider what happens at v, we recall some facts about the 
bifurcations of real solutions of T ] ( x ) - x = O .  Fundamental is the 
Mandelbrot domain M, which consists of the set of points 2 ~ C such that 
Ba is connected. The following information is drawn from the study of M by 
Douady and Hubbard. ~2~ (1) Let {xl(~), x2(6 ) ..... xk(6)} be a real k-cycle at 
Z =6 .  Then there is a real k-cycle {Xl(2), X2(/~),... , Xk(2)} for all 2>~6, 
depending ~ continuously on 2. (4~ (2) Let C denote a component of the 
interior M of M, such that C ~ [R 4: ~. Then we can write C ~ fR = (a, fl) 
where -1/4<~a <fl  < 2. For all 2 E (a, fl), T a has a unique attractive k- 
cycle {x1(2), x2(2),... , xk(2)}. This cycle is real and depends continuously on 
2 C (a,~). Conversely if {x1(2), x/(2)  ..... x~(2)} is a real attractive k-cycle 
then there is a component C of M with C ~ ~ 4= r such that 2 ~ C. (3) The 
derivative (d/dx) T](x)[x,(a ) is strictly decreasing in 2 C (a, fl), with value +1 
at a and - 1  at ft. At some point vC (a, fl), called the center of C, 
(d/dx) Tk(x)lx,~a)= 0, and then the k-cycle is said to be superstable. (4) 
2 = a is a bifurcation point for the real solution Xl(Z ) of T~(x ) -  x = 0 of 
one of two types. Either (i) there is, or (ii) there is not another component C'  

o 

of M with C'  ~ ~ 4: r and a C C ' .  In case (i) C is said to derive from C' by 
bifurcation at a. This means that C'  is associated with a real attractive p- 
cycle {y~(2), yz(2) ..... yp(Z)}, where p divides k and p 4: k, such that {y~(v), 
yz(v),..., yp(v)} = {xl(v), X2(V),...,Xk(V)}. In case (!i) we will say (a, fl) is a 
base. (5) There exists a component C" of M such that C ' ~ C = O ,  
C" ~ ~ 4: O, and fl C C".  Thus, fl is a bifurcation point of type (ii). 

Further information about bifurcations of real solutions of 
T~(x)--x = 0 now follows upon combining the above information with. (zS~ 
The only mechanism by which a real k-cycle of T a can appear for increasing 
2 is via either (i) a pitchfork bifurcation, or (ii) a tangent bifurcation. These 
correspond exactly to the two types of bifurcation point mentioned above; 
however, in the description of (i), it must be that k is even and p = k/2. Let a 
be a bifurcation point of type (ii). Then there is an associated real k-cycle 
{x~(2), x2(2),... , xk(2)} for 2 > a, continuously dependent on 4, which does 
not have a real continuation for 2 < a. This cycle can be continued to 2 = a, 
and {xl(a), x2(a),... , Xk(Ct)} is also a real k-cycle. For 2 ~> a there exists a 
real k-cycle {s s s continuously dependent upon 2, distinct 
from {x1(2),... , xk(2)} for 2 > a and such that xj(a) = s fo r j  ~ {1, 2,..., k}. 
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One of the two k-cycles is attractive and the other is repulsive for 4 C 
(a, a + c) for some e > 0. 

From the point of  view of the complex plane we see that a tangent 
bifurcation occurs with increasing 4 when two distinct k-cycles, one the 
complex conjugate of  the other, with nonzero imaginary parts, become real 
at 4 = a to form a single real k-cycle. As 4 increases from 4 = a to 4 > a the 
coalesced pairs of  points Separate, yielding two real k-cycles one of which is 
attractive and the other repulsive. On the other hand, a pitchfork bifurcation 
takes place when a self-conjugate k-cycle, with nonzero imaginary parts, 
becomes real at 4 = a. In this case, the members  of  the cycle coalesce in 
pairs on the real axis to become at 4 = a an indifferent real (k/2)-cycle. Not  
only at this value of 4 does the cycle merge with itself, but also it coalesces 
with a second real (k/2)-cycle which was real and stable for 4 C (a - e, a)  
for some e > 0. When 4 is increased from 4 = a to 4 > c~ the self-conjugate k- 
cycle becomes an attractive real k-cycle, and the (k/2)-cycle which was 
already on the real axis becomes unstable. 

We return now to the context of  Theorem 8, and consider what happens 
at v. 

Theorem 9. Let (/7(e,,e 2 ..... ek))={X,(4), X2(4),..., Xk(4)} with 
2 ~ (v, oo) be the real k-cycle exhibited in Theorem 8, and let x~(2) < xi(4) 
for j r  1. Let ~i=e i for i4=k, gk=--ek, and if the k-cycle possesses a 
partner, denote it by (/7(Y,, g2 ..... ek)) = {21(4), 22(4),...,:~(2)}. Assume that  
e l e 2 . . . e ~ = - - l .  Then {XI(4), X2(4),...,Xk(4)} is superstable at v with 
xl(v ) = 0, and it possesses a unique real continuation to some largest interval 
(a, fl), containing v, throughout which it is an attractive real k-cycle. For 
4 C (a, v) it obeys the functional equations 

a;(xj(4), 4) = x /4 )  

-- (4 -}- ej ~ / (4  qt_ . . .  _~ ~kV/(4 + ~1~//(4 _}_ . . .  _}_ ~j_2 ~ f x j ( 4 ) ) . . . ) )  

= 0 ,  j ~  {1 ,2 ,3  ..... k} 

If  the k-cycle is a loner then 2 = ct is a bifurcation point of type (i) at which 
the cycle takes part  in a pitchfork bifurcation. The (k/2)-cycle out of  which 
the real k-cycle appears,  and which is attractive over some interval 
immediately preceding the bifurcation point is (b(el,ez,...,ek/2)), and 
e l e 2 . . . e ~ / 2 = - - l .  If  {x1(2 ), X2(4 ) ..... Xk(4)} possesses a partner {.f1(4), 
Yz(2 ) ..... 2k(4)}, then the partner obeys ffj(2j(2), 2 ) =  0, j C {1, 2,..., k}, and is 
a repulsive k-cycle for all 4 C (a, oo). In this case 2 = a is a bifurcation point 
of type (ii) at which the k-cycle and its partner coalesce in a tangent bifur- 
cation. If  e le  2 -.. e ~ = + l  then the k-cycle (/7(el,ez,.. . ,ek)) possesses a 
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partner, and the roles of {xl(h ), x2(h),...,xk(h)} and {)?,(h), 2z(h), . . . ,2k(h)} 
are interchanged. 

Proof.  Since e~e 2 ..- e k = - 1 ,  we cannot have 

1- -  ele2 ""  ek 0 
2k[Xl(V) Xz(V) ... Xk(V)] 1/2 -- 

and the only possibility for stopping the continuation of the real solutions 
xj(h) of  ui(xi(h),h ) = 0  through decreasing h-values is xl (v  ) = 0, which 
means that the cycle is superstable and v is the center of a component of 3). 
It follows that the cycle possesses a unique continuation to some largest 
open interval (a, fl), containing v, throughout which it is an attractive k- 
cycle. Since the order of visitation is independent of h C (a, oo), it follows 
from Theorem 7A that the cycle must obey either u j ( x j ( h ) , h ) = 0  or 
ffj(xj(h), )~) = 0 at each h ~ (a, v). But the former is not possible, because if it 
was true then the k-cycle could be continued through decreasing h-values to 
a second center, which contradicts the information about the Mandelbrot  
given earlier. 

Notice that because E I E 2 . - . E k = + I ,  the real solution {Xl(h), 
x2(h ) ..... xk(h)} of tTj(xj(h), h) = 0 can be continued through decreasing values 
of h until h = a at which we have the bifurcation condition 

~UJ (Xj,/~)i el e2"" ek 
C~Xj ]~=a = ] -- 2k[Xl(a) X:~(a) ""  Xk(a)] 1/2 = 0 

For 2 C  ( a , a + e )  where e > 0 is sufficiently small the equations 
ffj(xj, 2 ) =  0, j C {1, 2 ..... k}, must possess a second distinct solution which 
we denote by {21(2), 22(2 ) ..... 2k(2)}. This must be either a (k/2)-cycle or a 
k-cycle according as the bifurcation point of a type (i) or (ii), respectively. 

Since for 2 ~ (a, a + e) the k-cycle {xl(/~), xz(h ) ..... xk(h)} is attractive, 
all other cycles must belong to Ba,  including in particular {2~(h),..., 2k(h)}. It 
now follows that the latter cycle is given by (/~(E1E 2 ..... gk)) which is a k- 
cycle if and only if (el, e2,"', ek) is a k-cycle in .(2, which is to say that 
{xa(h), Xz(h),... , Xk(h)} possesses a partner. The only other possibility is that 
a is of type (i) and (/7(El, ez,..., ek)) would have to be a k/2-cycle, namely, 
(b(gl,  e2,..., gk/2)) = (b(el,  e2,..., e~)), and {xl(h ), x2(h),..., x~(h)} must be a 
loner. Since the real (k/2)-cycle, out of which the real k-cycle {x 1, (h), 
xz(h),..., Xk(h)} appeared, must itself be attractive for h just less than a, we 
must have e~e z . . .  ek/z = - - 1 .  II 

Proo t  o[ Theor em  7(B). It is clear from the above that the order of 
visitation for a real k-cycle is the same as that for its partner, if it has 
one. II 
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Example 4. Consider the 4-cycle ( / ~ ( - + - - ) ) ,  for which X l=  
/ ~ ( - + - - )  is the least element. Since ( - + - + )  is not a 4cycle in 1"2, 
( b ( - + - - ) )  is a loner and must have appeared by pitchfork bifurcation from 
the 2-cycle (b(-+)) .  This 2-cycle is itself a loner and must have appeared by 
pitchford bifurcation from the 1-cycle (b'(-)). The latter has the partner 
(/~(+)), with which it appeared by tangent bifurcation. This example, 
including the orders of visitation, is summarized in Fig. 2. The dotted 
portions of the curves denote cycles which do not belong to B a and conse- 
quently are not represented by 2-chains. These cycles can be indicated by the 
functional equations which they obey. For 2 C (a 1, v l ) the  attractive 1-cycle 
obeys x - (2 -- V ~ )  = 0, whilst for ). C (vl, a2) it obeys x - (2 + ~/x) = 0. 
Similarly, Theorem 9 tells us that the attractive 2-cycle {xz, x2} which exists 
for 2E(a2 ,a3) ,  obeys Xl--(~,--~/(~--~l))=O, X2--(/~--~(/~--~22))=0 
for ) ~ ( a  2, vx), and x , -  ( 2 - V / ( 2 + V / ~ ) ) = 0 ,  x x - ( 2 + V / ( 2  - X/~2))=0, 
for 2 ~ (vx, a3). 

3.4. How B^ N [0, oo) is Fixed by Order of Visitation 

This section is mainly about the calculus of itineraries from the point of 
view of )L-chains. The underlying content is closely related to the results of 
Refs. 17, 26, 29, 35, 36, and 39, a good account of which is given in Ref. 14. 

x 

Y~= O 

,- ,5 

It(t_ 
Fig. 2. Sketch of the bifurcation diagram associated with the 4-cycle [/7(--+- )], labeled 
with the corresponding X-chains. See Example 4. 
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Our results are obtained more quickly because we are concerned only with 
quadratic maps and with eventually periodic kneading sequences. Our point 
of view is different in other ways as well. The calculus of itineraries involves 
a fairly complicated book-keeping exercise which is handled diagram- 
matically here, and the output, in 2-chain notation, gives the topology of B a 
in the sense of Section 2.4. 

We answer the following question, which concerns B~ ~ [0, oo) and 
how it varies with increasing real h. Let (b~(e~, e2 ..... ek) ) be a real k-cycle. 
Then what is the full set of other h-chains which necessarily belong to 
B a ~ [0, oe)? That is, we continue through decreasing h-values both the k- 
cycle and its partner (if it has one) until, at h = v ,  one or the other is 
superstable. Then we wish to determine B~ ~ [0, or). Equivalently, we define 
W~o = {a E ~ I/~(a) ~ (0, ~ )  when h = v}, so that B v ~ [0, oo) = b(Wo~), and 
we look for W~o. Notice that if (a, fl) is the interval of stability of (b(co)) (or 
its partner) then b ' - l (B~t~[0,  oo)) is independent of h C ( a ,  fl). Also 
b - l (Ba  ~ [0, oo)) is an increasing set-valued function of h E ~. 

We describe how to determine Wo,, starting from co ~ s~. From co we 
obtain the order of visitation of (/~(co)) according to Theorem 7. This order is 
the same both for the cycle and its partner, if it has one; consequently, it is 
unnecessary to decide whether it is the cycle or its partner which is 
superstable at h = v. The outcome of the computation is the same in any 
case. Indeed, instead of starting with co we could begin with the attendant 
order of visitation. 

From the order of visitation implied by co we can fix certain facts about 
the real mapping T,:  E ~ .  Let the real superstable k-cycle be 
{Xl,X2,...,xk}, where x 1 = 0 .  Then the set of points {(x~,x2), (Xz,X3),..., 
(xk_ 1 , xk), (x k, xl) } must lie on the graph of T~(x)= ( x -  v) 2. The graph is a 
parabola with its minimum on the x-axis at xk; see Fig. 3. Since we do not 
know v in general we cannot draw the graph accurately; however, we can 
make a sketch graph which contains the information we need. To do this we 
mark on both the x and y axes the set of points {x l, x 2 ..... Xk} according to 
their real order x~ < x,(2) < x,(3~ < ... < x,(k). We label the intervals defined 
by these points with the notation I0 = ( - o o , x 0 ,  11 =(x~,x,(2)),  I2 = 
(x,~2),x,~3)),..., I k_ l=(X~_ l ) , x2 )  and I ~ = ( x  2, ~ ) .  We also locate the 
points whose coordinates are (x 1, x2), (x2, x3),... , (x~_l, xk) and (Xk, Xl). The 
sketch graph is completed by joining the neighboring pairs of these points by 
straight lines, and including both a monotone decreasing straight line 
through (Xl, x,(z) ) for x ~ I 0 and a monotone increasing straight line through 
(X~,(k_I), X2) for x ~ I~. 

Example 5. To illustrate the procedure so far we construct the sketch 
graph for co = ( + - - - ) .  Denoting the corresponding 4-cycle ( b ( + - - - ) )  by 
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Fig. 3. 
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(X,)X~) 

> x 

X~ Xl~ k~. 

The graph of T~(x), when txl, x 2 ..... xk} is a superstable k-cycle. 

{Xl, X2, X3, X4} , its order of  visitation is x 1 < x 3 < x 4 < x2, and the intervals 
are I 0 = ( - o e ,  x 0 ,  11 = (xl ,  x3), 12 = (x3, x4), 13 = (x4, x2), and 14 = (x 2, 00). 
The sketch graph is shown in Fig. 4. 

Next we use the sketch graph to locate where lie the preimages under T~ 
of the intervals I o , I  ~ ..... I k. Let /~• denote the two branches of  the real 
inverse of  T v, where the negative axis cut is chosen, and 

= x k  + = x k -  

Then f o r j  ~ {1, 2,..., k} , /~+(I j )  [respectively, /~_(Ij)]  is contained in exactly 
one of the intervals {I0,11,..., Ik} which we denote by Ij+ (respectively Ij  ). 
To find Ii+ (respectively, Ij_) one reads off the interval on the x axis which 
lies to the right (respectively, left) of  x k for which the corresponding portion 
of the graph has I j  for its set of  y values. Notice that Ik+ = I k and I k = I o, 
whilst I 0 has no real preimages. Once Ij• have been found for j ~ {1, 2 ..... k} 
we construct what we will call the code for co, as follows. Label k + 1 
columns I o , I 1 , . . . , I k  and for each j ~  {1, 2 ..... k} draw two arrows, one 
labelled @ from the column Ij+ to the column Ij ,  and one labeled @ from the 
column I j_  to the column Ij .  In place of  using columns one can use points if 
k is not too large. 

Example  5 (continued). F rom Fig. 4, we readily find /~ ( / ~ ) c I  z, 
whence 11=12, and /~+(I1) c I 3 ,  whence I ~ + = I 3 .  Similarly I z _ = I  2, 
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Fig. 4. 

X~ 

-r 

w >x 

The sketch graph for co = (+- - - - - ) .  It is convenient to mark the intervals I0, I~, 12, 
I3, and 14 on both axes. 

I2+=-14, I 3 - = I  1, [3+=-I4, I4 -=- I0 ,  and I4+=-I 4. This information is 
represented by the code in Fig. 5a, and also by the code in Fig. 5b where 
points are used instead of columns. 

In general, once the code for co has been found, the set Wo, can be 
calculated as follows. To find a member of W~o we simply write down from 
].eft to right any half infinite sequence of plus and minus signs which is 
encountered upon following arrows from column to column (or point to 
point) commencing at Ij with j 4= 0. The set of all elements of ~ which are 
obtainable in this manner is exactly W~,, and the set of corresponding 
negative axis 2-chains is B~ ~ V, as stated formally in the next theorem. 

T h e o r e m  10. Let co belong to a k-cycle in X?. Then W~o is equal to 
the set of elements of X? which are obtained by following arrows in the code 
for co, as described above. 

Proof. Let the continuation through decreasing values of ,~ of either 
(/~(co)) or its partner be superstable at ~ = v. Then we recall that W~o is the 
set of e ~ X? such that b(o) C (0, oo) when ,I, = v. 
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Io 

3:o "t', ! , .  3-~ I t  

(a) 

) 

I 

f 

(b) 

Fig. 5. (a) The code for co = ( - + + + ) .  (b) The code for co = ( - + + + )  using points in place 
of columns. 

Let a E .O be obtained by following arrows in the code for co, as 
described above. Then fix 2 = v and consider the sequence of inverse 
functions ~" oo {Ro(x)}~=~ as defined prior to Theorem 2. There must exist two 
intervals I j  and I m with j , m  C {1, 2,...,k}, and an infinite subsequence 
{R~{i)(x)}~i such that 

t~n(i)(Im) C I] for i C {1, 2,... } 

(The interval 1 i is the one at which commences  the chain of  arrows giving a, 
and I m is an interval which is visited infinitely many  times on following that 
chain.) Since the k-cycle (/~(co)) or its partner is superstable the set of  critical 
points for all branches of  l~n(z) for any n is contained in the k-cycle and 
does not belong to I m. Hence the sequence of functions {R~(i~(z)} is 
holomorphic in a neighborhood of Im and hence by Ref. 13, Theorem 6.2, 
possesses a subsequence which converges uniformly on closed subintervals of  
I m to an element of  B v. This element of  B~ lies in I j c  (0, m) .  Note that 
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~,~i) ~ is nested and decreasing, the since the sequence of sets {Ro (Im)}i= 1 

convergent subsequence can be taken to be {/~2ti)(z)}~l, z ~ I  m. The 
element to which the subsequence converges can be uniquely represented 
5(t~) for some ff E/2 ,  since every real element of B~ is given by exactly one 
negative axis 2-chain. Noting that T~(b'(6)) must lie to the left or right of 
x k = 2 = v according as a n = - 1  or +1, respectively, we conclude that a = & 
and hence a E W~o as desired. 

Conversely, let ~ E Wo,. Then x = ~'(r ~ B~ ~ [0, oo) and for any 
positive integer n there exists y E B v N [0, oo), namely, y = T~(/~(~)), such 
that 

x = g ~ ( y )  

But this says that from the code for co by following arrows we must be able 
to find the sequence of signs belonging to the first n components of ~. We 
conclude that ~ can be obtained by following arrows in the code for co. ] 

Example 5 (continued). From the code for co = ( + - - - )  shown in 
Figs 5a and 5b we read off at once that W~o must contain the two 1-cycles 
(+) and ( - ) ,  and also the 2-cycle ( + - ) .  In fact in this case we see that Wo, 
consists of all elements of .Q expressible in the form 
( + + + " ' + t  . . . . . . .  t + - ) .  This notation extends that which was 
introduced earlier, and means all elements of the form (+), or 
( + + + ' " + t - )  where there are finitely many initial plus signs, or 
( + + + . . . +  . . . . . .  t + - )  where there are finitely many plus signs at the 
beginning, following by finitely many minus signs, followed finally by 
+ - + - + - +  . . . .  Notice in this example that Wo~ does not contain any 
elements which are not eventually periodic, in contrast to the next example. 

Example 6. We take co = ( + - - ) ,  for which the order of visitation is 

The corresponding code is 
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Notice that although this code is simpler to write down than the one for 
( + - - - ) ,  it implies that Wo, is much larger than for the previous example. 
W,o now consists of all elements of ~ which begin with finitely many plus 
signs, followed by any sequence of signs from {--, --+ }. In particular we see 
that the existence of the real 3-cycle (/~(--++)) implies that the Julia set 
contains real k-cycles of all other orders. Notice that the implied cycles are 
by no means arbitrary, and their orders of visitation are implicit. For 
example, the real 4-cycle (/7(--+++)) is implied but ( 5 ( - + + - ) )  is not. If 
( /7( -++-) )  is a real 4-cycle then the real 3-cycle (b'(-++)) is implied. Thus, 
although from the more general setting of Sharkovskiff 39) and of Li and 
Yorke (29) we have that "real period 3 implies real period 4," we have in our 
more specialized situation that "period 4 with a certain order of visitation 
implies period 3," and so on. 

We remark that if, in determining the elements of W,o from the code for 
o), we allow the sequence of arrows to start of I 0 was well as at 11, I2,..., Ik, 
then we obtain the subset of/2 for which the negative axis X-chains lie on the 
real axis; that is, we include those members of B a which lie on the negative 
real axis. 

We summarize as follows. Any co C .(2, or order of visitation of a real k- 
cycle, fixes a sketch graph and in turn a code. The code fixes Wo, and hence 
B v C3 [0, oo). Once B~ ~ [0, oo) is known the equivalence class structure for 
positive axis 2-chains is implied. The latter fixes not only the orders of 
visitations of all those cycles which necessarily coexist with the original one, 
but also the topology of B~ as described in Section 2.4. 

4. THE FIRST CASCADE VIEWED FROM THE COMPLEX PLANE 

4.1. Description of the First Cascade 

Here we illustrate aspects of the preceding theory with a description of 
the progression of Julia sets which occur when X increases and T a ( x  ) = 
(X-  X) 2 yields its first cascade of period doubling bifurcations. 

The cascade corresponds to the successive occurrence of the sequence 
of real 2n-cycles 

(/7(--)) 2~ 

(/7(--+)) 21-cycle 

(/7(--+----)) 22-cycle 

(/if(--+------+--+)) 23-cycle 

, / ~ , - - , - - - - - - , - , - - , - - - - - , - - - , ,  24-cycle 
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Let the 2nth cycle in this cascade be (5(co2.)). Then ((.02.+1)is obtained by 
repeating (w2.) twice and then reversing the last sign. One can readily check 
that (coz.) corresponds to the smallest element of (b(o)2.)), and also that 
except for the 1-cycle each cycle in the cascade is a loner, derived by 
pitchfork biforcation from its predecessor. 

Let (b(coz.)) be superstable at 2 = v n. Then it follows from Theorem 9 
that the vn's obey the sequence of functional equations 

fo(Vo) := v 0 = 0 

f,(v,) := v, -- ~ l  = 0 

f2(v2~ := v2- ~ + v ~  - v4~)) = 0 

f,(v3) := ~3-  ~ + ~ -  , / ~ -  ~ -  ~ + v / ~  - v4~)))))) = 0 

Here the negative axis branch cut is understood. These functions can be used 
as the basis for numerical methods for the calculation of the "universal 
constants" such as l i m . ~ v . = v ~  (equal to the Myrberg r number 
1.401155...) and 

lim vn--v~_l 
n ~ o o  Ifln+ 1 - - 1 1  n 

(equal to the Feigenbaum ~23) ratio 4.66920...). We note that the analysis of 
the )~-chains involved allows one to focus attention on exactly the k-cycles 
one wishes to study without having to consider irrelevant cycles of the same 
order. 

The conclusion of the first cascade is marked by the occurrence of the 
"oo-cycle" ( 5 ( - + - - - - + - + - + - - - - +  . . . . .  )) referred to by Ref. 20 and by 
Ref. 14. 

With the aid of Theorem 10 we calculate 

and 

w~,~ = {(+)} 

w ~ 2 = / ( + + + +  t - ) }  

w~4 = 1 ( + + + - +  t . . . .  �9 - t + - ) }  

w ~ 8 =  { ( + + + . . . + t  . . . . . . .  t + - +  . . . .  + -  t + - - - )  

The notation is that introduced in Example 5. 
In Figs. 6a-6f  we represent the successive structures of B a. We use the 

notation x for the real 1-cycle (5(--)), and we write Ta a(x) = {x, y} where 
x4= y. We use �9 to denote elements of k-cycles and [] to denote first 
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(a) 

b ( §  

b ( -  +) b ( - t -  +) 

( b )  

b(+t+-) 

(c) - - - 

Fig. 6, (a) Schematic representation of Ba when - 1 / 4  =~,0 < 2 < v o = 0 .  B a is a simple 
Jordan curve. (b) Sketch of Ba when 2 = v o = 0. B o is the unit circle. (c) Schematic represen- 
tation of  B a when 0 = v o < 2 < 2 t. Ba is a simple Jordan curve. 



(d) 

(e) b(-}-~-- +~ ~ b(--§ 

~(~~-+~-)~' ~C*~--~ 

!c-~f "--U G) ~ r  ~(,,-) 

Fig. 6. (d) Schematic representation of B x when 2 = Z ~ ,  at which occurs the first 
pitchfork bifurcation. (e) Schematic representation of B a when 2~ < 2 < v 1 . T a now possesses 
an attractive 2-cycle. (f) Schematic representation of the continuation of the component 
labeled Q in Fig. 6e. Now v~ < 2 < Z 2. Compare with Fig. 6c. 

822/37/1 2 6 
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predecessors of elements of k-cycles which do not themselves belong to k- 
cycles. The critical point ;t is shown in each figure. The 2-value at which the 
real 2n-cycle (/7(c02,)) first appears will be denoted ;t n. 

In Fig. 6a we give a schematic representation of B a in the complex 
plane, when - 1 / 4  = ;t o < 2 < v 0 = 0. In this case B a is a simple Jordan curve 
which separates C into two components, the immediate attractive sets of x 
and oo. The only elements of .O whose equivalence classes consist of more 
than one element are ( + ) ~  ( - ) ,  ( + 1 - ) ~  ( - 1 + )  and (sis 2 ... s n + t - ) ~  
( s i s2 . . .  s , - ] + ) ,  where each s i C {+ . -} .  The only real members of B a are 
the repulsive 1-cycle b ( + ) =  b ( - ) =  b(+) and its real preimage b ( + t -  ) = 
b ( -  ] +)  = / 7 ( -  t +)" x and y obey the functional equations x = 2 + X/~ and 
y = 2 - X/~. Also shown is the 2-cycle {b(+-) ,  b ( -+)}  together with its first 
predecessor {b(+t + -  ), b ( - t  -+ )} .  The continuation of the 2-cycle when it 
first becomes real, will coalesce with real 1-cycle which we denote by (/7(-)) 
to yield the first pitchfork bifurcation in the cascade. 

In Fig. 6b 2 = v 0 = 0  and the attractive 1-cycle x =  (/7(-)) is 
superstable. In Fig. 6c v 0 < 2 < 2 l, and the main difference from the situation 
in Fig. 6a is that the real ordering of x and y is reversed, and for all ,% > v 0 
we have x =  ; t -  V ~ and y = 2 + x/x. As ;t increases from v 0 to 21 the 
complex 2-cycle {b(+-) ,  b ( -  + )} approaches the real attractive 1-cycle x. 
As it does so the preimage {b(-  t + - ) ,  b(+ t + - ) }  approaches the preimage 
y of the 1-cycle. Not shown are the higher-order preimages of the 1-cycle and 
the 2-cycle involved: the predecessors of order n of the 2-cycle lie on the 
simple Jordan curve B a and can be separated into pairs each of which 
approaches one of the predecessors of order n of x. The latter all lie in the 
bounded component of the complement of B a. 

In Fig. d ;t =21.  B a is now pinched together at x, where b ( + - ) =  
b ( - + )  = (/7(-)). Prior to ;t 1 /7(-) actually yields the 2-cycle, which has 
nonzero imaginary parts, whilst for ;t > 21 it gives a real 1-cycle. Similarly 
B a is pinched together at y where b(+ t + - )  = b ( -  1 - + )  =/7(+ t - )"  The 
other multiple points in the figure represent a few of the countable infinity of 
other "pinchpoints" at which preimages of higher order of x and of the 2- 
cycle are coincident. The 1-cycle x is now indifferent rather than attractive, 
and lies on B a. The meanings of the chains indicated in Fig. 6d are clear 
from continuation. The three components in the figure which are labeled P, 
Q, and R are related by T a P  = Q, Ta~Q = P, and TalR = Q. 

In Fig. 6e B a is represented for 21 < ;t < vl. In this case there is an 
attractive 2-cycle, namely, {x~, x2} = (/7(-+)), and the previously attractive 
1-cycle denoted by (/7(-)) now belongs to Ba. {xl, xx} has emerged from x, 
leaving the ;t-chain /7(--) on B a, whilst the preimage {Yl, Yx} of the 2-cycle 
has emerged from y, leaving /7(+ t - )  on Ba. Thus, the 2-cycle which was 
earlier on B a has left it to become an attractive 2-cycle, its stability having 
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been transferred from the previously attractive 1-cycle which has now 
rejoined B a . 

In Fig. 6e we also show the 4-cycle {b(+-- -+) ,  b ( - - - + + ) ,  b ( - + + - ) ,  
b ( + + - - ) }  and its first predecessor { b ( - l + - - + ) ,  b ( - t - - + + ) ,  
b(+ t - + + - ) ,  b(+ t + + - - ) } ,  which will be involved in the next bifurcation. 

The situation for v I < 2 < 2 2 is essentially the same as for 21 < 2 < vl 
except that the real ordering of x 2 and Yl is interchanged. In Fig. 6f we 
represent for v~ < 2 < 22 the continuation of the component labeled Q in 
Fig. 6e. In Figs. 6e and 6f, P and Q denote the two components of the 
immediate attractive set of {x I, x2}. The behavior of the boundary of Q, as 2 
increases from 21, is similar to that of the whole of B a as 2 increases from 
20 . Indeed, if we consider T~ in place of Tx we see that { b ( + + - - ) ,  
b ( - - + + ) }  becomes a 2-cycle instead of part of a 4-cycle, whilst x2 becomes 
an attractive 1-cycle. As 2 increases { b ( + + - - ) ,  b ( - - + + ) }  pinches inwards 
to join x 2, whilst its predecessors under T] on the boundary of Q move to 
coincidence with the predecessors under T 2 of x 2 in Q. Similar deformations 
take place with regard to P and to the countable infinity of other components 
of the attractive set of {xl,x2}. 

Let 8P, cgQ, and ~3R denote, respectively, the boundaries of P, Q, and R 
in Figs. 6e and 6f. One readily shows that csp is given by the set of positive 
axis 2-chains b ( s 1 s ' l s 2 s ~ s 3 s  ~ . . ,  SnS~n " ") where each s i C {+, - }  and s[ is the 
opposite sign to s i. Similarly 8Q is given by b(SoS1SrlSzS~S3S~3 " "  SnS~n " " )  
and 8/? is given by b(soSoSlS~SzS  ~ . . .  s , s "  . . . ) .  Each of these boundaries is a 
simple Jordan curve because the Julia set is hyperbolic. The boundaries of 
the countable infinity of other components of the attractive set of the 2-cycle 
are obtained by taking inverse images of all orders of cgp, and the set of 
positive axis 2-chains of which a given one of these boundaries consists can 
be deduced from the successive branches of the inverse T a which when 
applied to e3P yield the desired boundary. Note that, for 21 < 2 < 22, B a is 
the closure of the set of all Jordan curves thus obtained. Similar observations 
apply with regard to the boundaries of the immediate attractive sets which 
occur as the cascade proceeds. 

We can now make some deductions about the locations of cycles during 
the cascade. Note first that the cycles which participate in the cascade, prior 
to their becoming real, are given by the sequence of positive axis 2-chains 

(2 ~ {b(+)} and {b(-)} 

(21) {b(+-) ,  b@+)} 

(2 2) {b(+ - - + ), b ( - - + + ) ,  b ( - + + - ) ,  b ( + + - - ) }  

(23) { b ( + - - + - + + - ) ,  b ( - - + - + + - + ) , - - .  } 
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When the 2n-cycle in this sequence becomes real, and (/7(m2n)) is attractive, 
then for all j C  {1, 2, 3,...} the 2"+J-cycle in the sequence resides upon the 
boundary of the immediate attractive set of (/7(o92~ For example, all of the 
sequence starting with {b(+-), b(--+)} lie upon B a when (/7(-)) is attractive, 
and all of the sequence starting with {b(+--+), . . .} are located upon 
9PU&Q when (/7(-+)) is attractive. The general assertion can be proved 
inductively. 

Our second deduction concerns cycles which do not  lie either on the 
boundary of the immediate attractive set of (/7(co2n)) when this cycle is 
attractive, or on any of the Jordan curves which are finite-order preimages of 
the boundary of the immediate attractive set. We have already illustrated 
how one can calculate the set of positive axis k-chains which make up the 
boundary of the immediate attractive set of a cycle. ClearLy any k-cycle 
whose positive axis k-chain is not included must itself not lie in the boundary 
of any component of the complement of B a which does not contain infinity, 
For example, when 21 <~-< 22 the 3-cycle {b(++-) ,  b ( + - + ) ,  b ( -++)}  
does not Lie upon the boundary of any of the "bubbles" in Fig. 6e and 6f, 
because its )!,-chains are not included in the ones, described above, which 
make up these boundaries. Thus the 3-cycle occurs only as an accumulation 
point of the boundaries in Figs. 6e and 6f. Similarly we discover that when 
the 3-cycle (/7(++-)) is attractive, none of the cycles involved in the first 
cascade are located upon the boundary of the immediate attractive set of the 
3-cycle or any of its finite-order preimages. 

4.2. The Feigenbaum Functional Equation 

In this section we relate, mainly formally, the preceding description to 
the theory of the Cvitanovid-Feigenbaum-Coulett-Tresser functional 
equation. In so doing we make a number of conjectures, concerning the 
existence and nature of various limits. 

We begin by describing a renormalization procedure, associated with 
the first cascade, along the lines suggested by Refs. 16, 23 and others, but 
viewed here in terms of the Julia set. As explained in Section 4.1, during the 
first cascade B a undergoes a sequence of structural changes which have an 
approximately self-similar feature. The Julia sets B~n associated with the 
superstable 2n-cycles, n = 0 ,  1,2 ..... look something like the sketches in 
Fig. 7. 

It is seen that the transformation which takes By0 to By, is approx- 
imately repeated in going from B~I to B~2 in the sense that each "bubble" in 
B~I is replaced by an appropriately scaled approximate copy of By .  
Similarly, in going from B~2 to B~3, each "bubble" in B~2 is replaced by an 
appropriately scaled approximate copy of By .  
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Fig. 7. Sketches of successive superstable Julia sets. 
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2 n Fig. 8. Schematic representation of the dynamics of Tun on K~,, n = 1, 2, 3,.... 
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For this section we take 

T ~ ( z )  = z 2 - ,~ 

The Julia set is the same as for ( z - ) 0  2, but shifted to the left by 2. B~ is 
now symmetrical about the origin. 

Let K~, denote the complement of B~., minus the component which 
2 n 

contains oo, and let K v = B~ ~J K v . Then we can relate the dynamics of Tv, 
_ _  n n 2 n + l  n _ _ _ _  

on K~, to the dynamics of T~,+I on Kv,+.  We convey this relation by 
implication, with the aid of Fig. 8. The sets represent K~,, K~2, Kv3 .... and 
the arrows show which component is mapped into which under T2v,, T 4 

~2  ' 

Tbv3,..., respectively. Note the successive reversals. 
We interpret universal scaling here as saying that the middle San Marco 

structure {31) of By, is related to that B~,+, by a constant scaling factor A in 
the limit as n ~ ~ .  Hence we assume that a limiting structure 

J =  lim A-nKv .  
n ---~(X) 

is well defined, and looks something like the sketch in Fig. 9. Correspon- 
dingly we also assume that a limiting mapping r analytic on J, is obtained 
by defining 

#(z) = lim (-1)"A-nT2"(Anz] 
V n ~  ] n ---~ OO 

(the minus sign takes care of the successive reversals). The manner in which 
maps the components of j0 can readily be deduced from Fig. 8. We cail 

j \ j o  the "Julia set" of #. 
It should be possible to calculate the action of 0 on J precisely. Good 

insight into the character of r and support for the above assumptions, is 
obtained by restricting attention to the action of T2~ on the central 
component P ,  of K v .  Here we show how this action is conformally 
conjugate via an intertwining map E n, to Tz~I  acting on P,+ 1, with the aid 
of a corresponding pair of B6ttcher functional equations. 

We derive these latter equations here from an electrical viewpoint. Let 
cgP, be the boundary of P , .  Let g,,(z) denote the Green's function for P ,  with 
pole at z = 0. Then 

2 n gn(Tvn(z)) = 2g.(z) + zcni for z E P.\{0} 

because T2~(P . )=P.  and T2~(OP.)=~Pn so both sides vanish as z 
approaches c3P., and because gn(Z) can be written as log(I/z) plus a regular 
function whilst T2~(z)= ( -1 ) "  c n z 2 + O(z 3) where e. is a positive constant. 

Let f . ( z )  be the unique conformal mapping which takes P .  onto Po, 
wi thf . (0)  = 0 and f . (z )  > 0 when z > 0. Then we must have for z E P.\{0} 

gn(Z) = go(f,,(Z)) = log[1/f,,(Z)] 
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. o  

Fig. 9. Sketch of the infinite structure J. It goes to infinity along both axes. 

where we have used the fact that P0 is the disk {z C C] ]z[ < 1} and go(Z) = 
log(i /z) .  It follows that 

f~(z) = exp[-gn(z) ]  for z E P ,  

and we now have 

f~(T~(z)) = ( -1 )" ( f~(z ) )  2 for z C P ,  

which is the B6ttcher functional equation associated with the superstable 
fixed point z = 0 of  TZ"(z). We set 

En(g) = fn+11(fn(Z)) 

Then for z C P ,  + 1 we have 

2 n 1 ~ 2 n + l ~  ", e.(ro.(E. (z))) =-~v.+,tz~ 
2 n which connects the action of  T~, on Pn with that of  T z"+' --V.+l on Pn+l" Our 

earlier scaling assumptions are equivalent here to supposing that E,(z) 
converges uniformly and rapidly to Az on the central component  P of  J, and 
that the limiting map 0 can be analytically continued out of  P. 

We next consider the relation between 0, the Feigenbaum function, and 
some results of  Lanford. (3~ Define, with domain the set of  functions even 
and analytic in a neighborhood of  the real interval [ - 1 ,  1], a renormalization 
operator F by 

(F~)(z) = - a -  I 7 .  o ~ ' ( a z )  
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where a is a certain positive constant. We review briefly some results of 
Lanford concerning F - - fo r  precision see Ref. 30. There is a function ~(z) in 
the domain of F, such that ~ (0 )=  1 and ~ ( 1 ) = - a ,  whose restriction to 
[ -1 ,  1] is a fixed point of F. Associated with the fixed point ~, F admits 
locally invariant local stable and local unstable manifolds, of codimension 
one and dimension one, respectively. Let 1~ and I ~  denote some particular 
local stable and unstable manifolds. For some integer j the family of 
functions FJ(Tt(z)), with T~t(z)= 1 - -2z  2, as a curve in function space, 
parametrized by 2, crosses W~ transversally at 2 = 2 ~  (a number near 
1.401155). 

The relation between Lanford's normalization and that appropriate to 
our setting is obtained by noting that 

f ~ ( z )  = s o T~ o S - I ( ~ )  

where S(z) = -z/)~. The form o f F  remains the same, but its domain is scaled 
and in our frame the Feigenbaum function is g(z)=-2o~(-z/2). We denote 
the corresponding manifolds by W~ and W~. 

We believe, and assume in what follows, that O ~ Wu, )~  = v~, and 
a = A. This seems entirely consistent with the description of how to find W~ 
given by Feigenbaum. t24) The point is that T,~ E W~ so that 

lira F"(T~o~(z))= g(z) 
n ---~ O 0  

whereas we have considered 

lira Fn(T~,(z)) = O(z) 
n - ~ 0 0  

Let us consider the "Julia set" for g(z). It is easily verified that the Julia 
set for the polynomial F"(T~(z)) is -v~R~")= (1/a")Bv~. Now, because T ~  
possesses no finite attractive or indifferent k-cycles, B~o ~ is treelike (see 
Ref. 3, for example) and can be constructed as follows. Let 

I0 = [ - ~  - (v| + �88 ~ + (v~ + ~)1/2] 

and let 

in= 
j = 0  
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I G o  then { ~}.=o is an increasing family of  trees, with 

B y  = lim I n 
n - - , o o  

B(v~ consists of  the same object magnified by ( l /a )" .  
We conjecture that the sequence of  magnified trees 

n (30 {(1/a ) I .+m}.=0 

converges to a treelike object Gin, and that {Gm}m~=o is an increasing family 
of  sets. Then we define 

G = lim G m 
m~co 

to be the "Julia set" of  g. 

- , , , i , -  �9 

" IF  

,, ,[,. ,, 

L " " i : . '  . J ,. .,. .. - .. ) ." 
�9 - . . .  . . 

�9 1 . .  ,. 

�9 : . 4 -  
. :  �9 . . .  - , - . .  

"." - "  ":l: ' l  '" v 
i '  " "1 

_- -  

41,  

�9 , -  �9 

Fig. 10. The heart of the Julia set for z2 _ v~.  This represents part of  B~m, contained in a 
box centered at the origin of width and height 4.852 • 10 z. It was obtained on a Terak 
microcomputer, single precision, with a screen of 320 • 240 pixels. The black dots represent 
points which after 400 iterations under Ta (A= 1.40115) have magnitude less than 100. 
Suitably scaled, the locations where some of the major limbs cross the axes are approximately 
the same as corresponding locations in the Epstein-Lascoux tree. 
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We claim that G O is the Eps te in -Lascoux  "tree" g - 1 ( N )  which is 
par t ia l ly  i l lustrated in Ref. 22. This claim, which is formal ly  reasonable,  is 
also supported by numerical  results: we have calculated approximate  
pictures of  R (") n = 0 ,  1, 2, 3, 4, 5, and, in addi t ion to noting apparent  - v |  
convergence within a central window, we have found that  there are clearly 
demarked major  l imbs, branching off the x and y axes, whose locat ions 
appear  to converge to corresponding locat ions in the Eps te in -Lascoux  tree. 
See Fig. 10. 

As yet  we know little about  G; some numerical  results suggest the 
possibi l i ty  G = C. If  this is true then the action of  g on C may  be thought of  
as being very close to that  of  a high-degree polynomia l  upon its Jul ia  set. It 
would also suggest that  the two-dimensional  Lebesgue measure  of  Bv~ is 
nonzero. 

Final ly ,  we connect the above conjectures back to 0. I f  0 C W u then it 
follows from Lanford ' s  results that  at least a subsequence of  inverses 

~n ~ F - " ( O )  converges to g. The "Jul ia  sets" of these inverses would be the 
boundaries  of  J ,  = a"J ,  each made of  infinitely many  bubbles but  such that  
in the limit all bubbles would be scaled out of  existence, producing the set G. 
This would certainly include the real and imaginary  axes, and if we are right, 
much, much more. 
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